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Neutral
Neutral (u2)
No, itisn't. It's 1199866. It seems Speaker B
that you have misdialed. . :
Speaker A mm m: ' Sadness
no one is listening; ..
(B feels) confused -«

(B feels) upseti.

Speaker B

Prediction: the neutral u2 is a causal utterance to u3
DAG-ERC (baseline): Using social commonsense knowledge: .

Figure 1: A case that the baseline DAG-ERC fails while the selected
commonsense knowledge can help to make a right prediction.
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Conversational Causal Emotion Entailment (C2E2) aims to
detect causal utterances for a non-neutral targeted utterance
from a conversation.

Causal utterances with different emotions, especially
neutral ones (neutral causal utterances occupy 87% of this
kind of causes), is still hard to detect even with emotion
information. Models are limited in reasoning causal clues
and passing them between utterances.
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Figure 2: The structure of our model. It contains 3 modules: (1) Utterance Encoder encodes every utterance; (2) KEC graph is constructed
from a conversation and knowledge attached in KEC graph is picked up by the knowledge selecting strategy. Conversation Encoder then uses
Knowledge Enhanced DAG networks to process KEC graph; (3) Cause Predictor pairs every two utterances to make predictions.
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Task Definition

C = [ulg...,uN} E = [61:-":6N]
P = [pl:"'?pN}

Every utterance u; is paired with its contextual utterances
uj (j < i). If u; is a non-neutral utterance and u; is its
causal utterance, the pair (u; , u; ) is labeled with 1.
Otherwise, (u; , u; ) is labeled with 0.
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Utterance Encoder

s; = Linear(Maxpooling(RoBERTa(u;))), (1)

where s5; € R% and d,, is the dimension of utterance repre-
sentation.
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Knowledge Enhanced Conversation Graph Utterance interaction adjacency matrix
G = (V,A.,Ay) A .contains two attributes: item and rel, where item stores O or 1
- ) CH

to denote the existence of an edge and rel stores the relation

type of an edge.
Utterance nodes

Knowledge passing adjacency matrix
V  models all utterances as nodes v; in a _ _ _ _
conversation. v; contains the attribute rep to store A contains two attributes: item and klg, where item plays the same

the utterance representation (i.e., v;.rep = s;). role as A..item and klg stores the knowledge attached on an edge.
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Knowledge Enhanced Conversation Graph Sentiment realization:
xEffect, xReact, oEffect, and oReact e Piss — Piaa] >
ry = pos neg: pos neg neu (2)
We denote the generation as CT(u; , XE), where CT and xE are the 0, else

abbreviations of COMET and x£77ect respectively.
posKy, negKy, neuKy = split(CT(u;, XE/xR))

The knowledge selection realizes two factors: posKs; negKe, neuko = split(CT(uy, oE/oR)

Speaker realization: If p; of the target u; equals to p; of the source u; , ifigs[(fgiI]ineu_ﬂien
knowledge of x£ffect and xReact is chosen, otherwise knowledge of offfect ifke;’sze',l)e_rf ;eu then
: g T
and oReact picked. Ay[i, j].klg = K[neu] + [sep] + K[e2s(e;)]
else

Ayli, jl.klg = K[e2s(e;)]
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hY = Linear([s;||eembe,]) iy
Knowledge Enhanced DAG Networks ckgi = GRUg(nlg;, h\™1), (8)
i -1
a; ; = Softmax;en, (Wi [hH|(hs + Wiki;)]),  (3) skg; = GRU,(ki s, h;” ). )
msg; = Z ai?ngc[{ i relhi,-, (4) Finally, the node representation of utterance w; in the /**
JEN: o layer is updated by summing the four types of information,
i.e. hl = nod; + cxt; + ckg; + skg;.
nlg; = ) i Wik, (5) b RS S S
JEN; After the encoding of two-level encoders, the final utterance
e L pl
o A E— representation is computed by h; = ||£ il [Shen et al.,
s = GRUn (5", mags), ©6) 2021b]. Whether u; is the cause of u; is then computed by:
cxt; = GRU.(msg;, hé'l). (7)

pi,; = sigmoid(MLP([h;||h;])), (10)
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| Train | Dev | Test

Num. of Positive | 7027 | 328 1767
Causal Pair | Negative | 45392 | 2842 | 14052
Num. of Dialgoue 834 47 225
Num. of Utterance 8206 | 493 | 2405

Avg. Len. of Utterance 14 16 15

Table 1:
causal pair.

Statistics of RECCON-DD. “Positive” means the true

| Model Neg. F1 Pos. F1 ~ macro F1
ECPE-2D# 94.96 55.50 75.23
1 | ECPE-MLL~ 94.68 48.48 71.59
RankCP# 97.30 33.00 65.15
KAG 9449{022) 5552(239) 7502{113)
2 Adapted 9567{024) 6247(472) 7907(244)
SKAIG 9526(012) 6315(100) 7921(049)
3 Entail 94.83{0.47) 58.59(3_73) 76.66(1_66)
DAG-ERC 95.33(0.25] 63.56(2_10] 79'44{1.16)
4 | KEC(ours) | 95.74(g05) 66.767, ;) 81257 .
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Table 2: Results of all models on RECCON-DD. * denotes that

our method is significant against the best baseline DAG-ERC (p-
value<0.05) with the paired T-test. © denotes the results referred

from Poria et al. [2021].
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Method Pos. F1 macro F1

KEC 66.76(0.33) | 81.254.7

— contextual 64.930.69) 80.25(0.37)
knowledge unit —1.83() —1.00(y)

— self-loop 65.00(0.92) | 80.21(0.54)
knowledge unit —L.76(,) —1.04()

— neutral 65.80(0.96) | 80.67(0.52)
knowledege —0.96(,, —0.58 ;)

— emotion 63.190.25) | 7935(0.17)
embs —3.56()) —1.90()

— emoition embs & | 46.66( 76) 69.90(0.48)
CSK —20.1¢) | —11.4¢,

Table 3: Ablation Study
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Figure 3: “Same Emotion” reports the recall of causal pairs whose causal utterances are with the same emotion as the targeted utterance.
“Different Emotion” refers to different emotions from the targeted utterance. The number of a type of pairs is presented below the x-axis.
Green bars denote DAG-ERC without emotion embeddings, blue bars for DAG-ERC with emotion embeddings, and orange bars for KEC.
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Figure 4: The effect of the window size. The y-axis denotes the
macro F1 on the development set. To better fit the trend, we draw
the trend line of fifth-order polynomial as the red dotted line.



